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Abstract: Different switching frequencies are required when SiC metal–oxide–semiconductor field-effect transistors (MOSFETs)
are switching in a space environment. In this study, the total ionizing dose (TID) responses of SiC power MOSFETs are investig-
ated under  different  switching frequencies  from 1  kHz  to  10  MHz.  A  significant  shift  was  observed in  the  threshold  voltage as
the frequency increased, which resulted in premature failure of the drain–source breakdown voltage and drain–source leakage
current.  The degradation is  attributed to the high activation and low recovery rates of  traps at  high frequencies.  The results of
this study suggest that a targeted TID irradiation test evaluation method can be developed according to the actual switching fre-
quency of SiC power MOSFETs.
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1.  Introduction

Silicon  carbide  (SiC)  metal–oxide–semiconductor  field-
effect  transistors  (MOSFETs)  have the advantages  of  high fre-
quency,  high  efficiency,  and  high  current  density  compared
with  Si  devices.  These  advantages  have  attracted  attention
in  the  pursuit  of  lightweight  structures,  miniaturization,
and  low  power  consumption  in  the  aerospace  electronics
industry;  therefore,  SiC  power  MOSFETs  have  very  broad
applications in the aerospace field[1, 2]. However, owing to the
sensitivity of MOS devices to space radiation and the high re-
quirements  for  the  reliability  of  electronic  devices  in  the
space  environment,  it  is  necessary  to  fully  test  and  evaluate
the application of SiC power MOSFETs in space electronic sys-
tems[3].

In  the  space  radiation  environment,  the  total  ionizing
dose (TID) induced by gamma rays is one of the most import-
ant  factors  that  cause  the  failure  of  electronic  devices.  Re-
cently,  the  radiation  response  of  SiC  power  MOSFETs  to
gamma  ray  irradiation  has  been  studied  by  several
authors[4–8] since  SiC  high-voltage  power  MOSFETs  have  be-
come  commercially  available.  Thus  far,  the  radiation  re-
sponse  has  been  studied  in  terms  of  irradiation  conditions,
such  as  the  temperature[4–6] and  application  of  gate  bias[7–9].
It  has been shown that  the radiation-induced holes move to-
ward  the  SiC/SiO2 interface  owing  to  the  applied  electric
field, and they are trapped by defects in the oxide near the in-
terface[10, 11].  However,  in  practical  applications,  SiC  power

MOSFETs  are  more  often  in  the  dynamic  switching  state  at
different  frequencies.  In  the  space  environment,  SiC  power
MOSFETs  can  be  used  in  space  solar  inverters[12, 13],  electric
thrusters,  etc.[14];  the  operating  frequencies  of  these  devices
vary from kHz to MHz, as shown in Fig. 1[15]. Few studies have
been  conducted  on  the  radiation  effects  under  the  dynamic
frequencies  of  SiC  power  MOSFETs.  Kobayashi[16] reported
the  gamma-ray  irradiation  response  of  the  motor-driver  cir-
cuit  with  SiC  MOSFETs,  but  this  was  based  on  a  specific  fre-
quency.  The  influence  of  a  variation  in  the  switching  fre-
quency  on  the  radiation  damage  characteristics  of  devices
has  not  been  fully  explored.  Therefore,  it  is  of  great  signific-
ance  to  study  the  influence  and  mechanism  of  the  switching
frequency of SiC power devices on the radiation damage char-
acteristics.

In  this  study,  the  relationship  of  the  performance  of  SiC
power  MOSFETs  and  switching  frequencies  varying  from
1  kHz  to  10  MHz  is  first  explored  in  the  harsh  TID  environ-
ment.  On  the  basis  of  the  above  work,  the  mechanism  by
which  the  operating  frequency  influences  the  radiation  re-
sponse  characteristics  of  the  device  is  further  discussed,  and
we  propose  that  it  is  feasible  to  improve  the  radiation  resist-
ance  ability  of  SiC  power  MOSFETs  by  appropriately  chan-
ging the switching conditions.

2.  Experimental details

The  experimental  devices  used  were  commercial  44  A
1200 V  N channel  SiC  MOSFETs  (CGE1M120060)  fabricated at
the Beijing Cengol Semiconductor Co., Ltd.. on 4H-SiC epitaxi-
al  layers.  In  fact,  our  experimental  devices  include  SiC  MOS-
FETs  of  Cree  (C2M0080120D)  and  Rohm(SCT2450KE).  Since
the experimental results are basically similar,  we only present
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the  experimental  results  of  this  device  (CGE1M120060)  be-
low. The samples were divided into five groups. The gate sig-
nal  amplitude was 15 V,  the high potential  was 15 V,  the low
potential  was  0  V,  and  the  duty  cycle  was  50%.  The  switch-
ing  frequencies  of  the  five  groups  were  set  at  1  kHz,  10  kHz,
100 kHz, 1 MHz, and 10 MHz. The control group was divided in-
to  two  groups:  the  first  group  was  biased  at  0  V  gate  bias,
and  the  second  group  was  exposed  at  a  positive  voltage  of
15 V.

In  the  experiment,  according  to  the  test  conditions  giv-
en  in  the  device  manual,  BC3193  was  used  to  measure  the
breakdown  voltage  BVDSS and  drain–source  leakage  current
IDSS of  the  devices  at  room  temperature  (25  °C).  A  Keithley
4200CSC semiconductor device analyser was used to test  the
threshold  voltage Vth before  and  after  irradiation.  These
samples  were  irradiated  at  the  Xinjiang  Institute  of  Physics
and  Chemistry,  Chinese  Academy  of  Sciences  by  using  a
60Co-γ source up to 300 krad(Si) at a dose rate of 200 rad (Si)/s.

3.  Results and discussion

Fig.  2 shows  the  changes  in  the  threshold  voltage Vth in
the  total  dose  radiation  environment  of  SiC  power  MOSFETs
under the operating states of ON, OFF, and different frequen-
cies. As shown in Fig. 2(a), The degradation in Vth was minim-
ized at the off operating state with a gate bias of 0 V, while it
was  maximized  when  the  gate  bias  was  15  V.  The  degrada-
tion  varied  at  different  frequencies  between  these  two  off-
sets.  Note  that  the  drift  of Vth increased  with  the  increase  in
the operating frequency at  the same dose point  (see the dis-
cussion and analysis below and Fig. 2(b)).

Fig.  3 shows  the  relationship  between  the  drain–source
leakage  current IDSS (Fig.  3(a))  and  the  drain–source  break-
down voltage BVDSS (Fig.  3(b))  of  the SiC power MOSFET with
various  total  doses  under  the  ON,  OFF,  and  switching  condi-
tions of different frequencies. As shown in Fig. 3, the trend of
the two parameters with the change in the dose point of  the
irradiation  was  not  the  same  exactly;  the  drain–source  leak-
age  current IDSS with  the  total  ionizing  dose  gradually  in-
creases  and  the  breakdown  voltage  significantly  decreases
when  the  total  ionizing  dose  reaches  a  certain  value.
However,  they  all  showed  that  the  damage  degradation
strongly  depended  on  switching  frequency.  For  example,  as
shown in Fig.  3(b),  under  the  same circumstances,  SiC  power
MOSFETs switching on 10 MHz irradiation to 150 krad (Si) com-
pletely  lost  their  blocking function,  and 1  kHz samples  in  the
250 krad(Si) region lost the ability to block high voltage.

The degradation of  the properties  and parameters  of  SiC
power  MOSFETs  in  the  total  dose  radiation  environment  is
mainly attributed to the oxide charge and interface states gen-
erated  and  accumulated  by  ionizing  radiation  near  the
SiC/SiO2 interface[10]. The amount of oxide charge and interfa-
cial  state  are  directly  related to  the  bias  state  of  the  gate  ox-
ide  layer[17]:  a  large  number  of  electron–hole  pairs  are  cre-
ated  in  the  oxide  by  the  ionizing  radiation,  and  under  the
zero-bias  condition,  the  pairs  quickly  recombine.  Therefore,
the  probability  of  the  hole  being  captured  by  the  interface
trap to form a trap charge is not high. However, under a posit-
ive  gate  bias,  because  the  electron  mobility  is  considerably
higher  than  the  hole  mobility  in  SiO2,  most  electrons  will
quickly drift to the gate, and the hole will drift to the SiC/SiO2

interface,  which greatly  increases the probability  of  the inter-
face  trap  capturing  these  holes.  Thus,  in  general,  the  radi-
ation damage of the MOS transistors is minimized at a gate bi-
as  of  0  V,  while  the  damage  is  maximized  under  the  condi-
tion of a positive bias.

Under  a  switching  frequency  bias,  although  the  bias
voltage  changes  constantly,  its  range  is  between  0  and  15  V.
Therefore,  this  mechanism  also  explains  the  parameters  and
performance  degradation  of  SiC  power  MOSFETs  at  different
frequencies. If we continue to infer according to this model, it
is  reasonable  to  conclude  that  the  radiation  degradation
should  be  approximately  the  same  regardless  of  the  operat-
ing  frequency,  because  under  the  50%  duty  cycle  condition,
the total time of the 0 V bias and the total time of the 15 V bi-
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as during irradiation do not vary with frequency. Our test res-
ults  show  that  the  radiation  damage,  including  the  paramet-
ers  and  function  of  the  SiC  power  MOSFETs,  depends  on  the
operating frequency to a certain extent. The static ionising radi-
ation  damage  model  of  the  SiC  power  MOSFETs  cannot  ex-
plain  the  actual  radiation  damage  in  the  dynamic  switching
state.

We  can  try  to  understand  the  above  phenomenon  with
the  oxide  hole  trap  model  of  the  US  Army  Research  Laborat-
ory (ARL)[18].  As shown in Fig.  4,  there is  a weak Si–Si  bond at
the  SiC/SiO2 interface;  therefore,  there  is  an  oxygen  vacancy
near  the  interface.  Once  these  weak  bonds  are  broken  (ow-
ing  to  the  ionizing  radiation),  an  active  trap,  known  as  the  E
centre,  is  formed.  It  can  either  capture  holes  that  are  posit-
ively  charged,  or  it  can  be  thermally  excited,  ionized,  or  tun-
nelled  through  electron  recombination,  making  it  electrically
neutral. This process is usually repeatable[19, 20]. For the switch-
ing  frequency  bias  in  this  experiment,  when  the  signal  had  a
high  potential,  under  the  action  of  a  positive  gate  electric
field,  a  large  number  of  net  holes  were  present  at  the
SiC/SiO2 interface,  and it  was easy for  the E  centre generated
by the  irradiation  to  capture  these  net  holes  and form a  trap
charge. This led to a drift  or the degradation of the threshold
voltage  and  other  parameters.  When  the  signal  was  at  a  low
potential  (0  V),  some  of  the  captured  holes  gradually  broke
away  from  the  trap  and  recombined  with  the  ionised  elec-
trons  and  tunnelling  electrons,  resulting  in  the  recovery  of
the threshold voltage to some extent. However, owing to the

low mobility of the hole and the absence of a driving electric
field,  the recovery  of  damage was  rather  slow.  The degree of
recovery strongly depended on the signal frequency. At relat-
ively  low  frequencies,  there  was  a  sufficient  time  for  damage
recovery  at  low  levels;  therefore,  the  overall  radiation  dam-
age  was  small,  and  as  the  frequency  increased,  the  duration
of the low level became shorter, so that the probability of the
hole  escaping  from  the  trap  and  electron  recombination  be-
came lower. Thus, with an increase in the frequency, the radi-
ation damage of the device was aggravated.

To further verify our inference, we designed another irradi-
ation  experiment  with  an  alternating  gate  bias  at  15  and  0  V
with different total doses under the same experimental condi-
tions;  the  experimental  results  are  shown  in Fig.  5.  No  obvi-
ous  recovery  of  the  threshold  voltage  was  found  at  the  first
low potential,  because the positive charge accumulation pro-
cess  was  stronger  than  the  recovery  process.  At  the  second
and  third  low  potentials,  a  significant  recovery  of  the
threshold  voltage  was  observed.  At  the  dose  point  of  300
krad  (Si),  the  negative  drift  of  the  threshold  voltage  was  ap-
proximately  –1.5  V,  and this  value is  lower  than the degrada-
tion  seen  in Fig.  2 under  the  minimum  value  of  1  kHz.  These
experimental results have confirmed the accuracy of our theor-
etical analysis to a certain extent.
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4.  Conclusion

In  summary,  the  results  of  this  study  show  that  TID  radi-
ation damage of the SiC power MOSFETs is related to the mag-
nitude and direction of the electric field applied during irradi-
ation,  and  it  also  strongly  depends  on  the  operating  fre-
quency.  Under  the  same  conditions,  the  TID  radiation  dam-
age  of  SiC  power  MOSFETs  will  be  aggravated  as  the  fre-
quency  of  the  device  increases.  Further,  a  low  frequency  can
be  consciously  selected  or  reduced  to  improve  the  radiation
resistance ability of SiC power MOSFETs under permissible ap-
plication  conditions.  The  results  suggest  that  we  can  devel-
op a targeted TID test evaluation method according to the ac-
tual switching frequency of SiC power MOSFETs.
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